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Abstract—The fundamental ingredient of content-based image
retrieval is the selection of appropriate features to describe the
content of the image. Shape of an object, represented by its
contour, is the most important visual feature that is thought to
be used by humans to determine the similarity of objects. In
this paper, we present an effective representation of shape, using
its boundary information, that is robust to arbitrary distortions
and affine transformation. The contour representation of shape
is converted into time series and is modeled using orthogonal
basis function representations. Encoding contour representation
of shapes in this manner leads to efficiency gains over existing ap-
proaches such as structural shape representation and techniques
that use discrete point-based flow vectors to represent the contour.
Experimental evaluation demonstrates that the proposed shape
representation and matching mechanism is effective, efficient and
robust to different arbitrary and affine distortions.

I. INTRODUCTION

In recent years, there has been a growth of research activ-
ity aimed at the development of sophisticated content-based
searching and retrieval of digital images. This development is
now especially timely given the rapid increase in the number
of systems that can capture and store information as digital
objects resulting in generation of more and more digital
images. A fundamental feature that determines the content-
based similarity of images is the similarity of object’s shape
in the image.

Shape matching generally looks for effective and percep-
tually important shape representation and distance measures
that are invariant to many distortions including noise, rotation,
articulation, scale, jag etc. Rotation invariance is relatively
difficult to handle as compared to noise, translation and other
distortions. Much of the earlier research on shape matching
achieve rotation invariance at the cost of accuracy [1] or
efficiency [2],[3],[4], [5]. Our ultimate goal is to generate
efficient and accurate rotation-invariant features to compare
shapes that are represented using closed planar contours.

In this paper, we apply time series modeling of contour-
based shape representation to the problem of shape matching.
Contours are modeled using function approximation technique
and matching of shape is carried out in the coefficient sub-
space. An efficient matching technique is proposed that can
match shapes which are not rotationaly aligned. The proposed
technique is also invariant to noise and different affine trans-
formations. The remainder of the paper is organized as follow.
We review some relevant background material in section 2. In

section 3 we present our function approximation approach to
contour-based shape representation. Section 4 addresses the
issue of rotation invariant shape matching without compro-
mising on efficiency and accuracy. In section 5, experiments
have been reported to show the effectiveness of proposed
shape matching approach as compared to competitors. The
last section summarizes the paper.

II. BACKGROUND AND RELATED WORK

Shape descriptors are known to be useful candidates for
content-based image indexing and retrieval schemes. Previous
work has sought to represent shapes through shape context,
shape signature, integral invariants, curvature, moments etc.
Broadly speaking, these shape representation and matching
techniques are classified into two classes: 1) contour-based
that only exploit contour information and 2) region-based that
incorporate all the pixels within the shape to generate shape
descriptor.

The contour-based approaches are more common in lit-
erature as studies on human perception have shown that
humans can recognize and discriminate shapes mainly by their
contour features. We therefore consider only contour-based
approaches here. Most of the contour-based shape represen-
tation generates a global representation of contour. Some of
the global representations include shape context [6], shape
signature [7], integral invariants [8] and differential invariants
[9]. Some approaches [5][10]segments the contour into pieces
and generate a piecewise representation of shapes. Piecewise
approaches differ in the segmentation criteria to break contours
into pieces and the modeling mechanism used to represent
contour segments. Some of the piecewise approaches include
polygon decomposition [5], smooth curve decomposition [10]
and curvature decomposition [11]. The advantage of piecewise
approaches is its ability to support partial matching and
as a result dealing with the problem of partial occlusion.
However, this merit of piecewise approaches comes with the
disadvantage of complex and inefficient matching. Piecewise
approaches do not capture global features of shape which is
extremely important for shape recognition and discrimination.

Rotation invariance is critical for accurate shape matching
and is hard to achieve as compared with invariance to other
distortions [2][12]. There exists a variety of techniques that
has been used for rotation invariant shape matching. Some
approaches [13][1] make use of rotation invariant features
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including features associated to curvature and centroid dis-
tances, ratio of perimeter to area, circularity, convexity etc.
These approaches achieve rotation invariance by compromis-
ing on the accuracy as selection of only rotation invariant
features may result in discarding other features that may be
sensitive to rotation but is important for fine discrimination
between different shapes. Approaches using 1D time series
representation of shapes has also been proposed [2][14][15].
Some of these approaches [16] achieve rotation invariance
by selecting very few starting point to obtain 1D time series
representation of 2D shape. Normally shapes are aligned with
respect to the major axis. However, such alignment are very
unreliable specially when there is no well defined major-axis
and slight articulation in shape may have significant impact on
rotation alignment. Some researchers proposed to use brute-
force search over all possible rotation to identify the true
alignment of shapes [2][3][4][14][17]. We need to shift one
contour n times (n ≫ 100) where n is the number of points
on the contour. The matching of one shape is carried out with
n different alignments of the other shape which jeopardises
the efficiency requirement of content-based image search and
retrieval systems.

The contribution of this paper is to show that a low dimen-
sional coefficient-based contour encoding scheme can be used
more efficiently for image searching than previous approaches
that rely on high dimensional representation of shapes. The
parameter subspace representation of contours is also robust to
the presence of different levels of noise and other distortions.
An efficient mechanism to achieve rotation invariance in shape
matching without compromising on efficiency and accuracy is
proposed.

III. LOW DIMENSIONAL SHAPE REPRESENTATION

In this section, we present our global contour-based shape
representation scheme based on time series representation.
Formally, the object contour C(O) is defined by the point
sequence:

C(O) = {(x1, y1), (x2, y2), ..., (xn, yn)} (1)

where (x1, y1) represents the location of the left-top point on
the contour and n is the number of points on the contour.

The 2-D raw point-based feature vector C is then converted
into 1-D centroid distance CD based time series by mapping
each point on the contour to the distance between the point
and the shape’s centroid as:

CDt = {
√
((xt − xc)2 + (yt − yc)2)} t = 1, 2, 3, ..., n

(2)
where

xc =
1

n

n∑
t=1

xt , yc =
1

n

n∑
t=1

yt (3)

The scale variance in shape representation is taken care of
by normalizing the distance vector CD with respect to the
standard deviation σ of the centroid distances as:

CDt =
CDt

σ
t = 1, 2, 3, ..., n (4)

The process of conversion of shape into 1-D time series
representation is depicted graphically in Fig. 1.

(a) (b) (c) (d)
Fig. 1. Extracting 1D time-series representation of shapes. (a) Projection of
shape in image plane. (b) Projection in C space with ‘o’ marker specifying
the starting point (c) Mapping of contour from 2D C-space to 1D CD-space
(d) Projection in CD-space.

For realistic scenarios, n >> 100 and this renders direct
manipulation of point sequence impractical for retrieval pur-
poses. The key to implementing efficient trajectory matching is
dimensionality reduction. The idea is to determine a feature ex-
traction function F that reduces the dimensionality of the data
from n to m such that m ≪ n. Similarity search and retrieval
is then conducted in the reduced feature space. We model the
projection of shape in CD based time series representation
using DFT based coefficient feature space representation. The
most salient features of the time series are captured by the
low frequency DFT coefficients, i.e. the first few terms of the
DFT series. The n-point DFT of {CDi}, defined as a sequence
{CDf} of n complex numbers (f = 1, ..., n), is given as:

CDf =
1√
n

n∑
i=1

CDiexp(−j2πfi/n) f = 1, 2, ....., n (5)

where j is the imaginary unit j =
√
−1 , and CDf are

complex numbers with the exception of CD0 which is real.
Typically, the DFT sequence is truncated after m terms,
f = 0, ...,m − 1. In this case, the feature vector consists of
2m−1 entries (from real and imaginary parts). More formally,
let ai and âi be the real and imaginary part of CD. Shapes
can be represented in the coefficient feature space by a 2m−1
dimensional vector of DFT coefficients FDFT , where

FDFT = [a0, a1, â1, ...., am−1, âm−1] (6)

IV. ROTATION INVARIANT SHAPE REPRESENTATION

The mechanism specified in section 3 generates a contour
distance (CD) based time series representation of shapes. It
then applies the distance measure in low dimensional feature
space representation of contours. This method produces good
results if CD-based time series representation of two shapes
are rotation aligned. However, this method can produce ex-
tremely poor results if the two shapes are not rotation aligned.
We propose a Critical-point based approach for Rotational
Invariant Shape Matching (CRISM). Instead of calculating the
distance of fixed shape with all possible rotations of other
shape, we calculate the distance with only the critical rotations
of other shape. A set of critical rotations is generated by
using a limited number of critical points on contour which
are extracted by identifying local maximas in CD-space. We
have employed k-beam search to identify local maximas.
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The algorithm for selection of critical points using CD-space
representation of contours is specified as follows:

1) Select k indexes C = c1, c2, ..., ck at equal distances on
the contour in CD-space.

2) Update indexes of critical points C as:

ci =

 ci + α iff CD(ci+α) > CD(ci)

ci − α iff CD(ci−α) > CD(ci)

ci otherwise
∀ci ∈ C

(7)
where α is a constant which is used to skip local
maximas caused by the presence of local noise. The
value of α is determined empirically at α = 4.

3) Iterate through step (2) till no index is updated for a
given iteration.

4) Identify the closest pair of critical points whose differ-
ence between their corresponding indexes is less than a
threshold β. Select the critical point whose correspond-
ing CD value is less than the other member and remove
it from C. The value of β is determine empirically at
β = Adesired/600.

5) Iterate through step (4) till the difference between the
indices of closest pair of remaining critical points is
greater than β.
The process of identifying critical points on the contour
is highlighted in Fig. 2.

(a) (b)
Fig. 2. Identification of critical points using local-maxima heuristic. Critical
points are highlighted using ‘△’ marker (a) in 1D CD-space representation
(b) in 2D contour-space representation

The contour of the fixed shape is extracted by starting
from the left-top point on the contour, as specified in
eq. (1). The centroid distance of left-top point on a
contour represents one of the local maxima in the CD
space. The fixed shape therefore has a default alignment
w.r.t. one of the local maxima. The distance between
the fixed shape is then calculated with a set of only
critical rotations of the other shape. The critical rotation
that gives the minimum distance with the fixed shape
will result into correct alignment of two shapes and
will return the rotation invariant distance. Comparison of
proposed critical-point alignment with computationally
expensive brute-force alignment is presented in Fig. 3.
For different pair of shapes, the alignment obtained
using brute-force alignment is no better than the align-
ment obtained using critical-point approach. Brute force
alignment requires shifting one of the curves n times
where n is the number of points on the curve. On the
other hand, critical-point alignment requires shifting the
curve nc times where nc is the number of critical points
on the curve. As nc ≪ n, we have managed to achieve

efficient rotation invariance without compromising the
accuracy of rotation invariance shape matching.

Fig. 3. Comparison of rotational invariant shape alignment using critical-
point and brute-force alignment.

More formally, suppose we have two time series A and
B representing two shapes in CD-space as:

A = a1, a2, a3, . . . , ap
B = b1, b2, b3, . . . , bq

(8)

where p and q are length of time series A and B re-
spectively. Assuming that A represents a fixed shape, we
identify a set of nc critical points C = {c1, c2, .., cnc}
using time series B. We achieve rotation invariance by
expanding B into a matrix B of nc time series as:

B =


bc1 , · · · , bq−1, bq, b1, · · · , bc1−1

bc2 , · · · , bq−1, bq, b1, · · · , bc2−1

...
bcnc , · · · , bq−1, bq, b1, · · · , bcnc−1

 (9)

Each row in matrix B is a time series representing
contour in CD-space aligned w.r.t. one of the critical
point. To make our distance measure invariant to mirror
images, we pad our matrix B with the reverse of all the
time series as:

B =



bc1 , · · · , bq−1, bq, b1, · · · , bc1−1

bc2 , · · · , bq−1, bq, b1, · · · , bc2−1

...
bcnc

, · · · , bq−1, bq, b1, · · · , bcnc−1

bc1−1, · · · , b1, bq, bq−1, · · · , bc1
bc2−1, · · · , b1, bq, bq−1, · · · , bc2

...
bcnc−1, · · · , b1, bq, bq−1, · · · , bcnc


(10)

The proposed framework for rotational invariant shape
matching also supports partial rotational invariance
where we only want to allow limited rotation in shape
matching. This can be achieved by rotating one of
the shape along limited number of critical points. Low
dimensional coefficient space representations of time
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series A and each time series in B are generated by
applying one of the dimensionality reduction technique
as specified in section 3.1. Let Bci represents the time
series that is aligned w.r.t. critical point ci and F (Bci)
is the coefficient feature space representation of Bci us-
ing dimensionality reduction function F (.), the rotation
invariant distance (RID(., .)) can then be specified as:

RID(A,B) = min
1≤i≤nc

(DIST (F (A), F (Bci))) (11)

where DIST (., .) is the Euclidean distance function.
The time complexity of querying a shape database using
CRISM algorithm is O(2 ∗ nc ∗ m ∗ N) where N is
the number of samples in a shape dataset. However, the
value of nc rarely exceeds 15 even for complex shapes
and the value of m is on the order of 8 to 32.

V. EXPERIMENTAL RESULTS

This section analyzes the performance of proposed ap-
proach for rotational invariant shape matching in the
presence of noise and other shape distortions. Experi-
ments are conducted on noisy shapes from a silhouette
dataset. We have randomly selected six samples from
each of the shape categories from the dataset.

Fig. 4. Effect of simulated noise using increasing value of σ on sample
shapes.

The purpose of the experiment is to compare the perfor-
mance of proposed CRISM-based approach for shape
matching with competitive techniques. The evaluation
metrics used for the comparison of various techniques
are Exact Retrieval Accuracy (ERA) and Class Retrieval
Accuracy (CRA). In the context of the current experi-
mental evaluation, ERA can be defined as the ratio of the
number of 1-NN queries that retrieve the desired result
to the total number of queries. CRA can be defined as
the ratio of the number of correct closest matches in 6-
NN queries that retrieve the desired result to the total
number of retrievals.
The silhouette dataset provides ground truth (i.e. manu-
ally labelled) shapes and so we try to simulate the effects
of noise. A dataset is corrupted by moving all points on
the contour in the normal direction by a certain distance
d which determines the amount of noise that is induced
in the shape. The value of d is generated from a zero-
mean gaussian distribution and standard deviation of σ.
If S represents the original data, a noise corrupted dataset
SC is produced by adding the term N [0, σ] to each (x, y)
coordinate on the contour in the normal direction. We
set σ = {1.0, 2.0, 3.0, 4.0} to simulate different noise

levels. Simulation of different level of noise on two
shapes is presented in Fig. 4. Each corrupted trajectory
in SC is then selected as an example query QC and
we search for a set of k nearest matches in the original
dataset S. This is defined as:

k-NN (QC ,S, k)={R ∈ S|∀A ∈ C,B ∈ S−C
RID(A, QC) ≤ RID(B,QC) ∧ |R| = k}

(12)

(a) (b)
Fig. 5. Effect of different level of simulated noise on shape retrieval accuracy
using (a) ERA metric (b) CRA metric

For ERA-based evaluation metric, we set k = 1 in
eq. (12). A set of rankings ∀QC ∈ SC is produced.
The closest match to QC should be its corresponding
uncorrupted version in S which produces a rank value of
unity. For ease of comparison we record the proportion
of times the query shape is ranked correctly as unity
when taken over all SC . For CRA-based evaluation
metric, we set k = 6 in eq. (12) as there are six members
in each shape class. A set of rankings ∀QC ∈ SC

is produced. A rank value for each 6-NN query is
calculated as a percentage of the correct closest matches
in nearest six matches. ERA percentage is then the
average rank values for ∀QC ∈ SC.

(a) (b) (c)
Fig. 6. Shape distances calculated using (a) CRISM (b) integral invariant (c)
differential invariant. Lighter shades represent high distances and vice versa.

To establish a base case, we have implemented two
different systems for comparison including integral in-
variants and differential invariants. The experiment has
been conducted on silhouette dataset. For the proposed
approach, shapes from the silhouette dataset are modeled
using DFT-based coefficient feature vector. We assume
m = 5 in eq. (6). The implementation of integral-
invariants and differential invariants is based on the ap-
proaches presented in [8] and [9] respectively. Average
ERA and CRA based retrieval accuracies for varying
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amount of noise in silhouette dataset are presented in
Fig. 5. The results from Fig. 5 shows that CRISM
gives the highest retrieval accuracies in the presence
of different noise levels followed by integral invariants.
Differential invariants performs worst in the presence
of noisy shapes and its performance deteriorates with
increasing noise levels.
To highlight the robustness of CRISM to noise and other
distortions as compared to competitors, shape distances
are presented in graphical format in Fig. 6 for ease
of visualization. Noisy query shapes are presented in
the left column and the dataset is presented in the top
row. The diagonal entries show the distance of noisy
query shape with its corresponding non-noisy shape and
the non-diagonal entries presents the distance of noisy
shapes with other samples. Lower gray levels represent
low distances and vice versa. Ideally, the diagonal entries
should represent the best match (minimum distance)
for the noisy query sample. We would like to have a
a block diagonal structure with low gray levels along
the diagonal. CRISM presents the best block diagonal
structure followed by integral-invariant. Differential in-
variant presents high distances on the diagonals and
does not present a block diagonal structure. Based on
these results, we see that the proposed shape matching
approach is more robust to the presence of noise in
shapes as compared to competitive techniques. We now
compare CRISM with some other competitors using
different publicly available datasets. Table 2 shows the 1-
NN classification accuracies of CRISM (obtained using
leave-one-out cross-validation) using different datasets.

Dataset # of Instances # of classes % Accuracy
Diatom 781 37 72.73
Chicken 446 5 80.71
MixedBag 160 9 95.625

TABLE I
ACCURACIES OF CRISM USING VARIOUS SHAPE DATASETS.

Experiment on chicken dataset enable us to compare
directly with to [18] and [2] who report the classification
accuracy of 79.5% and 80.04% respectively. The shape
matching approach specified in [18] takes around a
minute for one-one shape matching whereas [2] takes
0.0039 seconds. On the other hand, shape matching
using CRISM takes around 2.709 × 10−4 seconds.
Similarly, [2] reported the classification accuracy of
72.47% for Diatom datasets whereas CRISM achieved
the classification accuracy of 72.73% although CRISM-
based shape matching is 2 orders of magnitude faster
than the shape matching approach proposed in [2].

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a detailed discussion
on shape matching in the presence of noise and other
distortions such as articulation and rotation. A CRISM
algorithm has been proposed that exploits the contour

information for shape matching. Contours are converted
into normalized centroid distance based time series and
is modeled using orthogonal basis coefficient feature
space representation. A critical-point based approach
to support efficient rotation-invariant shape matching is
presented. The proposed algorithm is robust to affine
transformations and other arbitrary distortions. Experi-
mental results are presented to show that CRISM-based
shape matching gives better retrieval accuracies than
competitive techniques such as differential invariants and
integral invariants. The proposed approach demonstrates
good discrimination capability than the competitors as
reflected in the results presented in Figs. 5-6.
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