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Abstract 

 
This paper describes a comparative evaluation of 

three different similarity metrics for trajectory-based 
indexing and retrieval of video motion clips. The 
motion paths are generated using a low-level tracking 
algorithm incorporating first-order Kalman filter and 
colour appearance models. 

For simple motion paths, a RANSAC approach can 
be used to generate smooth trajectories for each 
tracked object described by low–order polynomials. 
This allows us to obtain a representative trajectory 
model even in the case of high numbers of outlier 
points caused by target mis-detection and multiple 
occlusions. 

We show that more complex trajectories including 
stop-start motions, can be modelled as time series 
using high order Chebyshev polynomials. Similarity 
metrics based on coefficient descriptors are shown to 
have comparable performance to a Hausdorff distance 
measure when retrieving trajectory-based motion clips 
but at substantially reduced computational cost. 
Experimental results are presented to illustrate the 
comparative performance of different matching 
metrics on real-world trajectory data collected by a 
retail store CCTV installation. 
 
Index Terms—motion trajectory, video indexing 
and retrieval, object tracking, similarity metric 
 
1. Introduction 
 

Intelligent surveillance systems are assuming an 
increasingly important role in crime detection and 
prevention. This is evidenced by the growing number 
of installed camera networks. One of the most 
important tasks for the next generation of commercial 
CCTV surveillance systems is to automate the process 

of robustly tracking objects in complex and crowded 
environments. 

Over the last two decades, the tracking problem has 
received extensive attention by the computer vision 
community [1]-[6]. However, the issue of how to 
curate the vast quantities of tracking data collected has 
only recently been addressed by researchers. One 
approach is through semantic video interpretation [7] 
where the system attempts to recognise user-
predefined events such as certain types of potential 
criminal activity. An alternative is to analyse object 
motion paths [8]-[10] in order to learn and predict 
patterns of behaviour, or to allow users to create 
queries about the content of surveillance scenes [11]-
[13], e.g. trajectory, colour, type of object, etc. and 
thereby retrieve useful information. 

Object-based motion trajectory descriptors are 
known to be useful candidates for content-based video 
indexing and retrieval schemes [14]-[16]. The 
importance of selecting an appropriate trajectory 
model and similarity matching metric for trajectory-
based querying of motion clips has received relatively 
scant attention. 

The work presented in this paper aims to address 
this issue and further develops ideas propounded in 
[11],[21]. The application domain addressed is retail 
store surveillance which presents a number of 
challenging problems when attempting to search a 
large database of video motion clips. These include 
crowded scenes leading to multiple target tracking, 
static and dynamic occlusions, highly constrained (and 
thus many indistinguishable) motion paths and short or 
broken trajectories. 

The remainder of the paper is organised as follows. 
We briefly outline the low-level tracking algorithm 
used to generate the raw trajectory data in section 2. 
The modelling process for obtaining smooth motion 
paths in described in section 3. In section 4, we derive 
a novel similarity metric for comparing polynomial-



 

based trajectory models and review some existing 
matching metrics. Experimental results of a simulation 
study to compare the performance of our proposed 
metrics are presented in section 5. The matching 
matching metrics are then used to query a database of 
real-world trajectory-based motion clips collected by a 
retail store surveillance system. The paper concludes 
with a discussion and summary in section 6. 
 
2. Acquisition of trajectory data 
 
2.1. Foreground detection and object 
segmentation 
 

The overall performance of the tracking algorithm 
largely depends on a robust and accurate foreground 
detection and object segmentation stage. We have 
found the adaptive background modelling technique 
based on [3] has provided reliable results. Before 
background subtraction can be applied, an initial 
background model should be learned based on frames 
with a majority of the background visible. However, 
the algorithm can create an initial background model 
even if there are small localised visible objects moving 
in the scene. It also adapts to any changes in the 
background even after the background model has been 
established. 

Foreground detection is combined with a SAKBOT 
shadow detection model [17]. Shadows are detected by 
assuming that they reduce the intensity of the 
underlying pixel without having a significant effect on 
its colour. 
 
2.2. Tracking via motion and appearance 
models 
 

We deploy a motion model based on first-order 
Kalman Filter and a colour appearance model [18] 
using histogram intersection and backprojection [19]. 
The advantages of this approach are its speed and 
simplicity of representation. 

The appearance model for the object is constructed 
as soon as the foreground blob is identified as a valid 
moving object. The object model is obtained by 
creating a colour histogram for the pixels considered 
part of the object. 

The overall structure of the tracking algorithm is 
illustrated in Fig. 1. For each frame in the video 
sequence: 
1. Predict new position of tracked objects using 

motion model. 

2. Calculate the most likely position of the object 
based on the prediction and the actual 
measurement associated with the object.  

3. Use histogram backprojection technique to 
identify the location of the object centroid based 
on colour model. Use the additional information 
obtained to validate and adjust the object location. 

4. Update the object state variable based on the 
object’s most likely position. 

5. Update the colour model for the object if it is not 
subject to static or dynamic occlusion. 

Dynamic object occlusions are handled by an extra 
processing stage, further details of which can be found 
in [18]. 
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Figure 1.  Overview of the low-level tracking 
algorithm 
 
3. Motion trajectory modelling 
 
3.1. Low degree polynomials using RANSAC 
 

The output of the tracking algorithm is a set of 
noisy 2-D points representing each object’s motion 
path over a sequence of frames. Initially, we propose 
to model the overall shape and speed of the object 
trajectory using a low degree polynomial. More 
complex trajectories are dealt with in section 3.2.  

In the case of retail store surveillance scenes, the 
motion paths are highly constrained by the store 
layout, e.g. placing of shelves and racks, although 
individual customer behaviour can be erratic resulting 
in complex trajectory paths. At the simplest level of 
representation, it is found that most trajectories are 
adequately modelled by polynomials of degree 3 or 
less. Typically, the motion path of a tracked object is 
usually constrained so that one of the coordinates is 



 

either predominantly monotonically increasing or 
decreasing. This will be termed the predominant 
coordinate. 

Given a set of n data points (xi, yi) (i = 1,2,..., n) the 
motion trajectory can be represented by a polynomial 
Pm(x) of degree m < n as 
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where x is the predominant coordinate. The unknown 
m+1 coefficients {ai} can be determined in a least 
squares (LS) sense by minimising the function E with 
respect to a0, a1, ... 
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The roles of  x  and y  can be reversed in (2), where the 
y-coordinate is predominant. 

It is well known that the least squares smoothing 
technique is highly sensitive to gross errors. Low-level 
tracking algorithms tend to produce noisy motion paths 
with a high degree of outliers resulting from mis-
detected object points and multiple occlusions. To 
reduce the effect of noise contamination on motion 
path modelling, we have used a RANSAC technique 
[20] 

RANSAC is particularly suited to model fitting 
where the data is highly contaminated by outliers. 
Instead of using all the points to fit the curve (as in 
LS), it  initialises the model with as small a data set as 
possible and then enlarges this set with consistent data 
where possible. When there are sufficient mutually 
consistent points, RANSAC then employs a standard 
smoothing technique such as LS to compute an 
improved estimate for the fit. The results of applying 
RANSAC to the trajectory data are shown in section 5. 

The object trajectory speed is also modelled in a 
similar manner using low degree polynomials. We 
have found it more convenient to model the x, y 
components of velocity (Vx ,Vy) separately. 
 
3.2. Chebyshev polynomials 
 

For more complex trajectories, it is necessary to use 
a different basis function. In recent work, spatio-
temporal trajectories have been successfully modelled 
using high order Chebyshev approximations [21], 
although there are other possibilities, e.g. radial basis 
functions, which are just as easy to compute and offer 
equally compact representations. 

Given a set of time-ordered points (xi, yi, ti) (i = 
1,2,..., n), the motion path can be modelled as a spatio-
temporal trajectory, i.e. as a 2-D time series. In the 1-D 
case, it can be represented by a function f(t) expressed 
as a weighted sum of Chebyshev polynomials Pk (t) up 
to degree m, defined as: 
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for t ∈ [-1,1] and i = 1,..., m. Further implementation 
details can be found in [18],[22]. In the next section, 
we show how to incorporate both shape and spatio-
temporal descriptors into a coefficient-based similarity 
metric. 
 
4. Similarity metrics for trajectory-based 
motion clip retrieval 
 

As we wish to search and retrieve similar motion 
trajectories to an example (or sketch) query, it makes 
sense to index the video object motion clips in a 
database using our model-based descriptors. Each 
tracked and labelled video object is therefore indexed 
by a set of shape {ai} and {ci}, and velocity 
coefficients {bxi,byi} representing the interpolated 
trajectory path. When a user invokes a query (motion 
path) which could be a free-hand sketch, a set of trend 
points marked on a representative background scene or 
a stored example, the coefficients are generated and 
compared to each of those in the database of clips. The 
closest matches are then retrieved in rank order 
according to some pre-defined measure of similarity. 
The speed with which the sketch query is drawn on a 
digital pad, or the proximity of points can be used to 
construct the {bi} coefficients. This should be 
normalised with respect to a typical time duration of 
object motion clips in the database. 

We compare the performance of three different 
matching metrics; Coefficient Differencing [11], Root 
Mean Square (RMS) Integral Difference and 
Hausdorff Distance [10]. 
 



 

4.1. Coefficient differencing (CD) 
 

This metric simply evaluates the Euclidean distance 
d(Mq,Mk) between the coefficients of the query Mq and 
stored trajectory position models Mk  as 
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where Mq = {aiq}, Mk = {aik} (i = 0,...,m) denote the 

coefficient sets for the query and stored models 
respectively. A similar expression for the velocity 
component gives 
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where Vq = {biq} and Vk = {bik} (i = 0,...,m) denote 

the coefficient set for the query and stored motion path 
speeds, and x, y subscripts represent seperate 
horizontal and vertical components of velocity. 

The two terms are then combined to form the CD 
distance function dCD as 
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where α, β are weight parameters chosen according 

to the query type. 
 
4.2. Root mean square integral differencing 
(ID) 

 
A modified form of the CD similarity metric can be 

obtained using a RMS integral function. Given 
polynomial expressions for query and stored trajectory 
models, Pq(.) and Pk(.),  the ID distance function dID 
can be defined as 
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This can be evaluated as a closed form expression, 

e.g. for polynomials of degree m = 3, as 
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where [l1, l2] is the interval over which the trajectory 
query is defined, and 
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In the case of complex trajectories when using high 

order Chebyshev approximations (typically m ≥ 25), it 
is still possible to derive an equivalent expression to 
(9) using a computer algebra system such as MAPLE. 

The ID metric represents a quantity related to the 
area between the trajectory curves normalised with 
respect to the length of the shorter curve. We can 
develop a similar expression to (9) using the 
coefficients of the velocity functions. 
 
4.3. Hausdorff distance (HD) 
 

The HD metric works directly with the raw pojnt 
data obtained from the output of the tracking process. 
Given two trajectories S and T, where S = {s1, s2,..., sm} 
and T = {t1, t2,..., tn} are discrete trajectory point sets, 
we define the HD distance metric dHD as 
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and d(s,t) is the Euclidean distance from the position of 
point s in one trajectory to point t in the other 
trajectory. A similar expression can be derived to 
match velocity data sets for different trajectories. 

The advantage of using HD in calculating the 
similarity between query and stored trajectories is that 
one can use the object-tracked points directly and it 
can cope with complex trajectory paths which cannot 
be adequately modelled with low degree polynomials. 
On the other hand, HD is expensive to compute and 
requires O(mn) operations, where m = |S| and n = |T|. 
It is also very sensitive to outlier points which can tend 
to dominate the distance calculation. 



 

5. Results 
 
5.1. Trajectory modelling using RANSAC 
 

Typical output from the tracking algorithm and 
trajectory modelling process (up to a dynamic 
occlusion) is shown in Fig. 2. The difference between 
LS and RANSAC modelling is not apparent for 
smooth trajectories with few noisy points. 

The advantage of using RANSAC over LS is 
demonstrated in Fig. 3 where the RANSAC result 
provides a more faithful representation of the motion 
curve. RANSAC implementation is represented by 
lighter grey curves whereas the black curve shows the 
curve fitting using simple LS. 

 

      
 

Figure 2. Motion trajectory modelling using LS 
polynomial fitting of degree 3. 

 
Figure 3. Comparison between LS and RANSAC 
modelling for trajectory paths through occluding 
frames. 
 
5.2. Comparative evaluation of retrieval 
metrics: Simulation study 
 

In order to compare the performance of the 
proposed similarity metrics CD, ID and HD on simple 
motion paths, we have generated 1000 simulated 
trajectories from an original set of 6 real tracking 
datasets. This ensures that each trajectory can be 
assigned to one of six categories for testbed evaluation 
using Precision (P) and Recall (R) measures. We use 
the standard definitions of precision and recall 

proposed in the information retrieval literature. The 
testbed allows us to establish the ground truth for 
determining the relevant results for each query. 

 

  
              (a)                      (b) 

  
      (c)                       (d) 
Figure 4.  Comparison of results retrieved for an example 
query. (a) 1000 simulated trajectories. The top 5% of 
trajectories ranked closest to the example query using 
matching metrics: (b) CD, (c) ID and (d) HD. 
 

Fig. 4 shows the results retrieved for the top 5% of 
trajectories ranked closest to an example query using 
each of the proposed matching metrics. In all 
simulation experiments we neglect the velocity term in 
(5), i.e. set β = 0. The example query is highlighted in 
black. 

From a qualitative point of view, the apparent 
similarity of the retrieved results depend on the shape 
of the query example, although the ID metric appears 
to produce more consistent results over a number of 
examples. A more objective evaluation can be gained 
by plotting precision-recall (P-R) curves for a wider 
range of queries. The P-R curve is obtained by varying 
the size of the retrieved list and calculating the 
precision and recall values for each list and then 
averaging over all queries. The results are shown in 
Fig. 5. 

The P-R curves suggest better performance for ID 
and HD matching metrics than for CD. The precision 
value for CD decreases more sharply than either ID or 
HD as the size of the retrieved list is increased. The 
HD metric slghtly outperforms ID, at the expense of 
increased computational cost. 

Although computational burden is significantly 
reduced using CD and ID metrics, since they only 
require processing of stored coefficient values, there 
are obvious drawbacks. For low degree polynomial 
models, matching can only take place when the 



 

predominant coordinate is consistent for all 
trajectories. Clearly, this is not always guaranteed in 
practice. For more complex trajectories, it is not 
obvious how to extend the CD and ID metrics to 
segmented piecewise defined motion paths. However, 
this is not a problem for the model-free HD matching 
metric.  
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Figure 5. Precision-Recall curves for different 
matching metrics. 

 
In the next section, we present some preliminary 

results of matching more complex spatial-temporal 
trajectories (as time series using high order Chebyshev 
approximations) to a query and qualitatively compare 
the retrieval performance using metrics based on 
coefficient descriptors and Hausdorff distance. 
 
5.3. Retrieval results with real-world trajectory 
data 
 

The motion sequences were obtained using a digital 
video recorder which was part of a retail store CCTV 
installation. A fixed CCTV camera was used to record 
15 mins of video footage at 15 frames/sec and having 
resolution 352 by 288 pixels. A partial or complete 
spatio-temporal trajectory dataset was stored for each 
successfully tracked object in the sequence using the 
technique described in section 2. A sample subset of 
trajectories are shown in Fig. 6. When tracking has 
been lost due to static or dynamic occlusion after a 
short time interval, or when multiple overlapping 
objects cannot be resolved, the trajectory has been 
excluded from the database or stored only as a partial 
trajectory. 

The motion clips stored in the database (size = 30) 
are then indexed using the coefficient descriptors 
derived from the Chebyshev approximation using m = 
30 (see section 3.2). 

Figs. 7(a)-(f) show the motion paths retrieved for 
various user-specified queries. The queries all contain 
stop/start motions observed in typical customer 
behaviour. The results indicate only those trajectories 
whose dCD and dHD values lie within a certain 

tolerance. The query curve is shown in black and the 
proximity of points denotes the object velocity, i.e. 
points that are closer together show the object moving 
slowly or stopping in the case of repeated points. 
 

 
 
Figure 6. Sample subset of stored spatio-temporal 
trajectories. 

 
The CD metric, although simple to compute, 

appears to give qualitatively similar results to HD, 
although these are dependent on the query type. In 
most cases, the top 3-4 retrieved results are the same 
for both metrics. Even taking into account the time 
taken to compute the polynomial approximation, the 
search time is drastically reduced when using CD 
rather than HD as a similarity metric. 

These preliminary results show that it is possible to 
distinguish between those customers who are browsing 
products along the aisle (at specific locations) and 
those who are mainly using it as a thoroughfare. 

 

 
(a)   (d) 
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(c)   (f) 

Figure 7. Retrieval results for 3 different user-
specified spatio-temporal queries. (a)-(c) Highest-
ranked matches based on CD metric (using 
Chebyshev approximation), (d)-(f) Highest-ranked 
matches based on HD metric. 
 

 
6. Conclusions 
 

A polynomial modelling approach is proposed for 
smoothing motion trajectories and using coefficient 
descriptors as a basis for content-based indexing and 
retrieval of video clips. Simple motion trajectories are 
modelled by least squares polynomial fitting 
incorporating a RANSAC technique for ensuring 
resistance to outliers. More complex spatio-temporal 
trajectories are described using high order Chebyshev 
polynomial approximations. In both instances, the 
coefficient descriptors are shown to be a useful index 
key into a database of video surveillance clips 
representing tracked objects. A user-defined query can 
be sketched as a means of searching this database and 
results are retrieved in rank-order of proximity to the 
query trajectory according to a matching metric. 

The performance of three different matching metrics 
has been compared: Coefficient Differencing (CD), 
Hausdorff distance (HD) and a novel distance measure 
known as Root Mean Square Integral Difference (ID). 
Both position and speed can be combined in a unified 
way when formulating these distance metrics. On the 
basis of a simulation study, HD gives marginally better 
results than ID but at greater computational cost. 
Precision-recall results indicate that ID metric is an 
acceptable alternative to HD. The advantages are that 
the ID metric is simple and quick to compute, as the 
evaluation depends only on stored coefficient 
descriptors and query defined end-points. The 
disadvantage of using coefficient descriptors is that the 
monotonicity of the predominant coordinate has to be 
consistent for all trajectories in the database. This is 
difficult to achieve when modelling complex motion 
paths that are not adequately described by low degree 
polynomials. 

In the case of real-world complex spatial-temporal 
trajectories, we have found that retrieval results 
obtained using similarity metrics based on coefficient 
descriptors (derived from high order Chebyshev 
polynomial approximations) give qualitatively similar 
rankings to Hausdorff distance metrics used 
previously. 

We have compared two different similarity metrics 
(CD and HD) when querying a video surveillance 
database of motion clips derived from observing 
customers shopping in a busy retail store. Encouraging 
results have been obtained which suggest that users are 
able to search for motion clips that distinguish between 
customers’ trajectories through the store.  

In further work, we intend to evaluate the 
performance of these and other matching metrics on a 
larger, more comprehensive database of spatio-
temporal trajectories involving more complex motion 
paths and tracking under severe occlusions. Other 
polynomial models, e.g. radial basis functions, offer 
the potential of improving compactness of 
representation when combined with the detection of 
path critical points and this will be explored in future. 
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