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Abstract

Techniques for understanding video object motion activity are becoming increas-
ingly important with the widespread adoption of CCTV surveillance systems. Mo-
tion trajectories provide rich spatiotemporal information about an object’s activity.
This paper presents a novel technique for clustering and classification of object
trajectories using basis function approximation. In the proposed motion learning
system, trajectories are treated as time series and modelled using modified DFT-
based representation. A framework (Iterative HSACT-LVQ) is proposed for learning
of patterns in the presence of significant number of anomalies in training data. A
novel modelling technique, referred to as m-Mediods, is also proposed that mod-
els the class containing n members with m Mediods. Once the m-Mediods based
model for all the classes have been learnt, the classification of new trajectories and
anomaly detection can be performed by checking the closeness of said trajectory to
the models of known classes. A mechanism based on agglomerative approach is pro-
posed for anomaly detection. Our proposed techniques are validated using variety
of simulated and complex real life trajectory datasets.

Key words: Object trajectory, dimensionality reduction, trajectory modelling,
trajectory clustering, event mining, anomaly detection, motion recognition.

PACS:

1 Introduction

An increasing number of systems are now able to capture and store data about
object motion such as those of humans and vehicles. This has acted as a spur to
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the development of content-based visual data management techniques for tasks
such as motion data search and retrieval, discovery and grouping of similar
motion patterns, detection of anomalous behaviour, motion understanding
and prediction. These techniques are essential for the development of next
generation ‘actionable intelligence’ surveillance systems.

Much of the earlier research focus, in motion analysis, has been on high-level
object trajectory representation schemes that are able to produce compressed
forms of motion data [1][2][3][4][5][6][7]. The literature on trajectory-based mo-
tion understanding and pattern discovery is less mature but advances using
Learning Vector Quantization (LVQ)[8], Self-Organising Maps (SOMs) [9][10],
Hidden Markov Models (HMMs) [11][12], and fuzzy neural networks [13] have
all been reported. Most of these techniques attempt to learn high-level motion
behaviour patterns from sample trajectories using discrete point sequences as
input to a machine learning algorithm. For realistic motion sequences, conver-
gence of these techniques is slow and the learning phase is usually carried out
offline due to the high dimensionality of the input data space.

Current systems mainly took a supervised learning approach by basing their
motion analysis on a predefined classification of trajectories. Supervised ap-
proaches to motion learning are less useful in video surveillance applications
since labelled training data are not usually available, or is impractical to ob-
tain. Techniques are required that learn motion activity patterns in an unsu-
pervised manner. Unsupervised learning of motion patterns and developing a
high-accuracy activity classification system are challenging tasks. The prob-
lem gets even more complicated in the presence of anomalies. Typically, in
visual surveillance, there are commonly observed motion paths and those that
appear unusual or anomalous. This paper is focused on both of these issues
in the context of trajectory-based learning and classification whilst identify-
ing and filtering the anomalies. We use modified Discrete Fourier Transform
(DFT-MOD) based coefficients for low dimensional feature space represen-
tation of trajectories. An iterative learning algorithm has been proposed to
learn motion patterns while catering for the presence of significant number
of anomalies. The proposed unsupervised learning algorithm does not require
any prior information about the number of patterns present in the unclassified
dataset. The paper also addresses the issue of modelling of normal patterns
to be used later for classification of motion activities. A novel approach for
model-based classification of trajectory patterns and anomaly detection is also
presented. The proposed motion learning and classification technique is com-
pared with other methods reported recently in literature, using simulated as
well as realistic motion datasets.

The remainder of the paper is organized as follow. We review some relevant
background material in section 2. Section 3 briefly describes our coefficient
feature space representation of motion trajectory. In section 4, an iterative



learning algorithm has been proposed to learn patterns in the presence of
anomalies. Section 5 addresses the issue of modelling of normal patterns to be
used later for classification of motion activities. A novel approach for model-
based classification of trajectory patterns and anomaly detection is presented.
Experiments have been performed to show the effectiveness of proposed sys-
tem for trajectory-based learning and classification of motion patterns in the
presence of anomalous motion samples. These experiments are reported in
section 6. The last section summarises the paper.

2 Background and related work

Trajectory descriptors are known to be useful candidates for compressed rep-
resentation of object motion in videos. Previous work has sought to represent
moving object trajectories through a wide variety of direction schemes, polyno-
mial models and other function approximations. [1][2][3][4][7][15][16][17][18]. It
is surprising to find that many of these candidate time series indexing schemes
have not yet been applied to the problem of motion data mining and trajectory
clustering. Recent work has either used probabilistic models such as HMMs
[19] or discrete point-based trajectory flow vectors (PBF) [8][9][13] as a means
of learning patterns of motion activity. An agglomerative clustering algorithm
based on the Longest Common Subsequence (LCSS) approach is proposed
in [20][21] for grouping similar motion trajectories. The problem with PBF
vector-encoded trajectory representation is the heavy computational burden
making prospects for online learning of motion patterns remote.

Learning of patterns from trajectory data to extract high level information
has gained interest quite recently. Earlier work rely upon labelled training
data for model training [12][22][23]. Yacoob [38] and Bashir et al. [12][22]
have presented a framework for modeling and recognition of human motion
based on a trajectory segmentation scheme. Classification is performed using
Gaussian Mixture Model (GMMs) and HMMs for trajectory modeling that
relies on PCA-based representation of segmented object trajectories. In [39)],
a semantic event detection technique based on discrete HMMs is applied to
snooker videos.

There exists some work on learning from unclassified training data such as
[8][10][20][21][24][25][26][27][28]. Owen and Hunter [10] uses Self Organizing
Feature Maps (SOFM) to learn normal trajectory patterns. While classifying
trajectories, if the distance of the trajectory to its allocated class exceeds a
threshold value, the trajectory is identified as anomalous. A similar approach
is proposed by Hu [9] who performs learning of normal activity patterns us-
ing fuzzy SOM instead of SOFM. Zhang et al. [23] propose a semi-supervised
model using HMMs for anomaly detection. Temporal dependencies are mod-



elled using HMMs. The probability density function of each HMM state is
assumed to be a GMM. A number of eigenspace clustering techniques have
been proposed recently [34][44]. However, these approaches normally require
known number of clusters. Some approaches, based on spectral clustering, at-
tempts to approximate the number of clusters [32][33]. Affinity propagation-
based approaches have also been proposed recently [41]. Affinity Propagation
(AP) uses message passing mechanism between training data points to solve
the k-medoid problem by finding representative exemplars within dataset with
a similarity structure. However, AP requires the specification of two important
parameters: preference parameter and the damping factor. It is very hard to
know the value of these parameters that will yield optimal clustering results.
The solution to this problem is provided by Wang et al. [42]. They proposed
an adaptive affinity propagation method for clustering to automatically select
the preference parameter to identify the correct number of clusters and finding
the optimal clustering solution. However, these approaches can not cater for
the presence of anomalies in training data although it is very difficult to be
sure of clean training data when the trajectory dataset in unlabelled. Most of
the existing unsupervised learning approaches cluster training data by defining
the pairwise similarities between training samples [34][44][32][22][33][41][42].
However, calculating the pairwise affinity matrix have the computational com-
plexity of O(N?) in both time and space where N is the number of samples
in the training data.

The contribution of this paper is to present a novel mechanism for efficient and
effective learning of motion patterns whilst filtering anomalous samples from
training data. The proposed technique does not require any prior knowledge
about the number and type of patterns hidden in datasets. A novel approach
for model-based classification of trajectory patterns and anomaly detection
is also presented. Clustering, classification and the detection of anomalous
trajectories is carried out in the parameter space with reduced computational
burden.

3 Modified DFT-based trajectory representation

This section provides a brief overview of our trajectory representation scheme
based on time series representation and modified DFT (DFT-MOD). Without
loss of generality, we consider the projection of a moving object O in the (z,y)
image plane. O registers its location (z;,y;) in (z,y,t) space at each instant
of time t = t;. The object trajectory T(0) is defined by the point sequence

T(O) = {(l‘l, Y1, tl), (ZEQ, Ya2, tg), ceey (l‘n, Yn,s tn)} (]_)



where n is the sequence length. Hence, trajectories can be treated as motion
time series.

In applications to fixed-camera surveillance, it is not necessary to apply shift
and scale transformations to the data before model fitting. We wish to preserve
shift and scale dependence at the clustering stage. Trajectories are split into
two 1-D time series in (z, 1), (y, t) space. In tracking applications, observations
are recorded at regular time intervals and hence we assume ¢; = ¢ where ¢ is the
frame index. T'(O) can then be represented as two time series X = z;, Y = y;,
1 = 1,...,n. We represent the trajectories using DFT-MOD based coefficient
feature space representation. DFT-MOD is an extension of DFT [14]. DFT-
MOD is generated by augmenting the DF'T coefficients-based feature vector
with some extra information regarding the length and starting location of the
trajectory. These important information are not modelled correctly by DFT
if we select only top few DFT coefficients which simply models the mean
and trend of motion in the trajectory. All these factors may contribute to
the fall-off in retrieval and classification accuracies, using simple DFT based
dimensionality reduction, where starting point and duration of motion are
important features for distinguishing different trajectories. Let (¢, o) is the
starting point and n is the length of trajectory, DF'T-MOD based feature space
representation of trajectory is represented as

FDFT—MOD = [TL, Zo, Xf7 Yo, Yf] (2>

where Xy and Y} are the DFT based feature space representation of z; and y;
time series.

4 Learning of Motion Trajectories in Presence of Anomalies

In this section, we present a novel algorithm for learning patterns in the pres-
ence of anomalies in training data. The motivations of the proposed learning
algorithms are to:

e develop an unsupervised learning algorithm that exploits coefficient feature
sub-space and performs fast and efficient motion learning with the space and
time complexity much less than O(N?) where N is the number of training
samples.

e automatically identify the right number of patterns instead of requiring
manual information regarding the number and types of groupings hidden in
dataset.

o effectively identify the number of clusters without requiring multiple passes
through the learning process for different number of cluster options.



e minimizing the adverse effects caused by the presence of anomalies in train-
ing data, on learning of normal motion patterns.

The proposed clustering mechanism is a cooperative learning algorithm that
combines Learning Vector Quantization (LVQ) with Hierarchical Semi-Agglomerative
ClusTering (HSACT). The architecture chosen for the LVQ consists of a sin-
gle layer of input neurons connected directly to a single 1-dimensional layer of
output neurons. The original LVQ structure [29] initializes the network with
the number of output neurons equivalent to the number of clusters actually
desired in the dataset. This type of hard clustering does not guarantee that
the network will identify and distinguish all major groupings. The network
may organize itself to represent variations with in one major grouping of the
data by allocating more than one output neuron to that group. The situa-
tion is analogous to the problem of optimisation where it gets stuck in local
minima. Similar problem is faced by k-medoid based algorithms (i.e. local
minimas). One has to repeat the algorithm many times to find an acceptable
solution. To increase the probability of getting the clustering right, a modified
structure of LVQ to support hierarchical clustering technique is used. It is a
flexible clustering technique in which LVQ is initialized with the number of
output neurons that is greater than the number of groupings actually hidden
in the data set. LV(Q component is responsible for extracting fine groupings
in trajectory dataset only once. HSACT component uses these fine clusters
to generate coarse clusters and, in the process, discovering the actual number
of groupings in the trajectory dataset. This is done by calculating the quality
of clustering, using cluster validity index, at each iteration of HSACT algo-
rithm. The number of clusters with the best value of validity index is taken
as the number of patterns that are hidden in unclassified training data. In
contrast, traditional approaches for learning and approximating the number
of patterns [22][32][33] require repeating the complete clustering process for
different number of clusters, resulting in significant computational overhead.
The proposed clustering algorithm optimizes the criterion function that tends
to minimize the within cluster variance.

Instead of having a single cycle of learning iteration, an iterative approach
is taken and in each iteration, some anomalous trajectories are filtered from
the training data. This is done by identifying the learned clusters with fewer
cluster memberships as anomalous after each iteration. Trajectories associated
to anomalous clusters are then filtered from the training data. This results in
reducing the adverse affects, caused by the presence of anomalies in train-
ing data, on learning of normal motion patterns. The process continues till
no trajectory is identified and filtered as anomalous. Fig. 1 depicts the itera-
tive nature of the proposed learning mechanism to cater for the presence of
anomalies in training data. High peaks in distribution curve represent train-
ing samples belonging to normal motion pattern where as low peaks represent
samples which are not common and are anomalous. The learning algorithm



Distribution of samples in training
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Fig. 1. Depiction of single iteration in an iterative algorithm for learning patterns
in presence of anomalies

for unsupervised learning of motion patterns from corrupted training data
comprises the following steps:

(1) Initialize the LVQ network with greater number of output neurons than
the number of clusters we want to identify in motion trajectories using:

& if € <100
#output = (3)
100 otherwise

where
¢ =size(DB)/4 (4)
(2) Estimate a single multivariate Gaussian (PDF') form the training data
DB as:
1 (X —p)?
PDF = ——exp | ——c— d
s C1P 55 ()

where X € DB, pis the mean and ¥ is the covariance estimate associated
to DB. Generate # it Samples from the PDF N (p, ¥) and use them to



initialize the weight vectors associated with each of the output neurons.
Determine the winning output node k (indexed by ¢) such that the eu-
clidean distance between the current input vector F' and the weight vector
W), is minimum:

c=arg min p||F —Wy(t)| VEk (6)

Train LVQ network by adjusting the weight vector of winning output
node. The weight vector of winning node ¢ is updated using

We(t +1) = We(t) + o) (F — We(t)) (7)

where «(t) is the learning rate of LVQ and ¢ is the training cycle index.
Decrease the learning rate «(t) exponentially over time using:

a(t)=1—¢ tmos (8)

where t,,,, is the maximum number of training iterations. t,,,, is lower
bounded by the number of samples in training dataset.

Repeat steps 3-5 for all the training iterations.

Ignore output neurons with no training data associated to them.
Calculate Cluster Validity Index (CVI) to check the quality of current
state of cluster. To ignore the effect of anomalies, C'VI is calculated only
for those clusters with significant memberships. Criteria for clusters to
be included in calculation of C'VI is specified as:

Fvalid = {Fz - I‘||Fl| > l{} Vi (9)

where T' is the set of all clusters, |I';| is the number of training samples
associated to cluster I'; and & is the threshold constant. For the set of
valid clusters I' 44, the mathematical expression of C'VI is given as:

CVI(k) = (11 x gl x Dk> (10)
k

E=Y Y x-w (1)

Xel'j AT'jelyalid

Dy, = maz};_|W; — W (12)
where k represents number of clusters, X represents a sample training
data associated to valid clusters and W; represents weight vector asso-
ciated to cluster I';. In eq. (10), the factor % will decrease CV'I index
as k is increased. On the other hand, % increases C'V'I index as FE
is a constant and Fj decreases with increase in k. The third factor D,

will increase with the value of k. These three factors tend to balance each



(10)

(11)

(12)

(13)

(14)

other nicely. Values of k, resulting in higher values of C'V I index, indicate
better clustering.

Identify the closest pair of cluster (i, j) (indexed by (a,b)) given by the
condition

(a,b) = argming ) (W — W)T (W, = W)z Vi, j Ai#j  (13)

After finding the most similar pair of clusters, the two clusters are merged
into one using

W, = "Wa 0V, (14)
m-+n

where m, n are the number of sample trajectories mapped to clusters a
and b respectively.
Iterate through steps 8-9 till the number of clusters get equivalent to 1.
Identify the number of clusters corresponding to highest C'VI value.
Validate the stability of clustering process. This is done by identifying
and filtering the clusters with fewer cluster membership as:

Fanomalous = {Fz € F||Fz| < ’i} Vi (15>

If no cluster has been identified as anomalous, the resulting clusters are
considered to be stable without having any negative effect caused by
the presence of anomalies in training data. On the other hand, if some
clusters have been identified as anomalous, re-initialize the LV(Q network
as specified in eq. (3).

Identify and filter the anomalous trajectories present in the training data
DB using:

DByfiterea = {X € DB|X € I'; AT; € (T — Tonomalous)} Vi (16)

Approximate Gaussian PDF of weight vectors, associated to valid clusters
Fvalid , AS:

PDFvalid =

1 (W — Nvalid)Q] (17)

vV 27‘(‘21,@“51 [ QEvalid

where W is the weight vector, ji,qiq is the mean and 3,44 is the covari-
ance estimate associated to I',qz4.

Re-initialize the weight vectors associated to output neurons. Let #.utput
is the number of output neurons with which the network is initialized
and #,qiq is the number of normal patterns identified in the previous
learning iteration. The new network is initialized by using # .4 Weight
vectors identified in the previous learning iteration along with (#output —
Hoatia) Weight vectors obtained randomly from the PDF N (fiypatid, Svatid)
as approximated using eq. (17).



(15) Go to step 3 for learning the patterns, using the training data DBijered-

The space complexity of the proposed learning algorithm is O(N) where N
is the number of training samples. The time complexity of our algorithm is
approximately O(w * t,,,,). Here, w is the number of times required to iterate
through HSACT-LV(Q algorithm to filter anomalies from training data and
timae 18 the maximum number of training iterations within HSACT-LVQ algo-
rithm. The complexity O(w * t,,4,) is much less than O(N?) for datasets with
larger number of training samples.

5 Model-Based Classification and Anomaly Detection

In this section, we build on the learning of patterns outlined in previous section
towards modelling of different classes representing object motion patterns. The
resulting models of identified patterns can then be used to classify new unseen
trajectory data as normal (i.e. belonging to one of the existing labelled classes)
or anomalous (i.e. sufficiently distant from all of the known classes).

5.1 Modelling Motion Patterns

A novel mechanism is proposed for modelling various patterns that are present
in motion dataset. A pattern is modelled by a set of cluster centres of mutually
disjunctive sub-classes (referred to as mediods) within the pattern. The mod-
elling mechanism is influenced by our proposed HSACT-LV(Q based clustering
mechanism. It has been shown in our previous work [40] that hierarchical
semi-agglomerative approach using a neural network, such as HSACT-LVQ),
outperforms hard clustering techniques such as k-Means. k-Means is very sen-
sitive to the initialization of cluster centers and is normally initialized to a
randomly picked sample from dataset. k-Means produce poor clustering and
classification results due to poor initialization. As a result, k-Means based al-
gorithms face the problem of local minimas. On the other hand, the proposed
algorithm (HSACT-LVQ) avoids the problem of local minima by initializing
itself with greater number of cluster centers then the number of groupings to
be identified in the dataset. Finer clusters are then merged, based on their
similarities, to generate coarse clusters representing the desired number of
sub-classes (mediods). The proposed modelling technique, referred to as m-
Mediods modelling, models the class containing n members with m mediods
known a-priori. The space complexity of the proposed modelling algorithm is
O(n). The time complexity of our algorithm is approximately O (a2 )-

The outline of proposed modelling technique is given in Fig. 2. Once the labels
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of trajectories from training dataset are learned, trajectories from a single class
are passed as an input to the modelling algorithm. The output of the algorithm
is a set of mediods used for modelling the pattern. Modelling of different

Model Patterns( DB, #, _dicde, tmaz. MO /¥

Input: Indexed training data DB associated to pattern i,
Input: # mediods 15 mumber of mediods used to model pattern i
Input: MMax number of training iterations #,,,..

Ot put: Modelled pattern in the form of list of mediods (M) %/

(1) Initialize SOM network with #.uep.e output neurons using
£ if§ <100 AL > (Fmediods X 2)
Foutput = F medicds % 2 ifE < ([ #Fmediods * 2)
100 iff = 100
where &£ = size(DBU) /2
2 Initialise weight vectors W, (where 1 < i < #,.p.) from the PDF
N (3, E) estimated from training samples in DB
(3 Initialise ¢ to 0.
(4) while (t < f 0]
(5] for (each feature vector F in DRG]
(6] Caleculate Euclidean distance between F' and weight
vector Wy, for each cutput neuron.
(7 Select output neuron ¢ with minimum distance value,
(=) Update weight vectors for output neuron ¢ using
W_(t4+ 1) =W () +a(t)(F —W_ ()
(9 Diecrease learning rate
alt) =1 — gftma=
(10) if f+ + == frnan
(11} Break the loop.

1/ end for loop
1// end while loop
(12) lgnore clusters with zero cluster membership.

I-.lg.-l “rhi]-e(#autpu# = #med’ioﬂ'sj{

(14) Select most similar output neurons.
(18] Merge similar output neurons using weighted means mechanism
W L= mWa4n W
o a mitr
'meI Toutput = #ou!‘puf -1
1 /4 end of while
(17} Append weight vector W, to MU

L/ f end for algorithm

Fig. 2. Proposed algorithm for modelling pattern using m-Mediods

patterns, using proposed approach, is demonstrated in Fig. 3. In order to
visualise the modelling process, modelling of patterns is done using simulated
STMj and STM;5 datasets. In Fig. 3, each point represents an instance from
the dataset. Instances belonging to the same class are represented with same

11



colour. Squares super-imposed on each group of samples represent the mediods
obtained using m-Mediods modelling algorithm to model the patterns.

i +
n
ot ot + _%iu}# £
.

£
+
n
4 4F ot
"
s i
+ Ex

Fig. 3. Mediods-based modelling of patterns in (a) SIM;3 dataset (b) SIMs dataset

After modelling the pattern ¢, the distance array D corresponding to model
M is pre-computed, to be used later for anomaly detection, as follows:

(1) Identify the closest pair of mediods (i, j) (indexed by (p, ¢)) from M(© as
follows:

(p,q) = arg ming j Dist(M;, M;)  Vi,j N1 # ] (18)

where Dist(M;, M;) is the euclidean distance function.
(2) Populate the distance array for the current number of mediods using

D\ = (p, q, Dist(My, M,)) (19)

where [ is the current number of mediods.
(3) Merge the most similar pair of mediods using

mM, + nM,
m-+n

M,

pq —

(20)
where m, n are the number of sample trajectories mapped to mediods p

and ¢ respectively.
(4) Iterate through steps 1-3 till the number of mediods gets equivalent to 1.

5.2 Trajectory Classification and Anomaly Detection

Once the m-Mediods based model for all the classes have been learnt, the
classification of new trajectories is performed by checking the closeness of said
trajectory to the models of different classes. For this purpose, the trajectory

12



is posed as a query to the entire set of mediods (M) belonging to different
classes. Identification of k£ Nearest Mediods (k-NM) to unseen trajectory can
be specified as

E-NM (Q,M,k)={R e M[VR e C,S € M — C, 1)
Dist(Q,R) < Dist(Q,S) A |R| =k}

where @) is DFT-MOD based feature vector representation of unseen trajectory
to be classified and R is the set of k closest mediods. A previously unseen
trajectory () is assigned to the same class, indexed by ¢, to which the majority
of k nearest mediods belong.

After identifying the closest activity pattern (c¢), it is checked to see if the
unseen data is reasonably close to the closest activity pattern or not. A novel
mechanism based on agglomerative approach has been proposed for anomaly
detection. The description of anomaly detection algorithm is specified as fol-
lows:

(1) Initialize index [ with the number of mediods (m) used to model a pat-
tern.

(2) Identify the closest pair of mediods and their corresponding distance, for
the current number of mediods I, using D(® as:

(9, 4, dpy) = D} (22)

where d,, contains the distance between mediods indexed by p and g.
(3) Identify the mediod, from M), which is closest to the test sample Q.
The closest mediod, indexed by r, is identified using:

r = arg ming Dist(Q, M) Vk (23)

(4) Test trajectory @ is considered to be a valid member of class ¢ if:

Dist(Q, M,) < dy, (24)
(5) If the condition specified in eq. (24) is not satisfied, decrement the index
[ by 1.
(6) Merge the pair of mediods, indexed by (p, ¢), using
mM, + nM,
M =_—Pr 774 25
A s (25)

where m, n are the number of sample trajectories mapped to mediods p
and ¢ respectively.

(7) Tterate steps 2-6 till [ gets equivalent to the significance parameter 7. If
the test trajectory () has yet not been identified as a valid member of
class ¢, it is considered to be an outlier and deemed anomalous.

13



The significance parameter 7 determines the sensitivity of proposed anomaly
detection algorithm to anomalies. Lower value of 7 results in acceptance of
more unusual data instances as normal members of one of the known classes
and vice versa. Values of significance parameter 7 lies in the range 1 < 7 < m.

6 Experimental Results

We now present some results to demonstrate the effectiveness of the proposed
clustering, classification and anomaly detection techniques in the coefficient
feature space.

6.1 Ezxperimental Datasets

Experiments are conducted on five different synthetic and real life motion
trajectory datasets. These include CAV-CORR, LAB, ASL, SIM3 and SIMj5
datasets. The characteristics of these datasets are summarized in Table 1.

6.2 FExperiment 1: Learning Motion Patterns in Presence of Anomalies

The purpose of this experiment is to demonstrate the effectiveness of Iterative
HSACT-LVQ algorithm for learning of patterns while catering for the presence
of anomalies in unclassified training data. The experiment has been conducted
on real life CAV-CORR dataset that contains anomalous trajectories within
the dataset itself. CAV-CORR dataset is also suffering from the problem of
perspective effects due to the presence of depth in CAV-CORR scene. To avoid
this problem, we use ground plane homography to map image coordinates
to ground plane for CAV-CORR dataset. The calibration is available from
[30]. The homography matrix is estimated using the method outlined in [31].
Trajectories are modelled using DFT-MOD based coefficient feature vectors.
The network is trained for t,,,, = 5000 number of iterations. The clusters
with fewer cluster memberships are identified as anomalous and are filtered.
We assume x = 0.05 x |DB]| in eq. (9) where |DB]| is the total number of
samples in training data. If some clusters are identified as anomalous, training
samples associated to such clusters are removed from the training dataset.
The learning process is repeated again, but now using the filtered training
data. This process continues till clustering process gets stable and no cluster
is identified as anomalous.

The clustering results obtained, by applying the Iterative HSACT-LVQ method-
ology on CAV-CORR dataset, are shown in Fig. 4. The red trajectory in each
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Dataset Description # of tra- Extraction Labelled
jectories method (Y/N)

SIM3/ Simulated datasets com- | arbitrary Simulation. Y

SIM35 prising of two dimensional
coordinates generated from
Gaussian distributions to
form 3 or 5 clusters.

LAB Realistic dataset gener- | 152 Tracking mov- | Y
ated in the laboratory ing object and
controlled environment for storing motion
testing purposes. Trajecto- coordinates.
ries can be categorised into
4 classes.

CAV- A manually annotated | 126 Parsing XML | N

CORR video sequences of moving files  contain-
people from corridor view ing motion
in a shopping centre. coordinates.
Object tracking coordi-
nates are generated using
interactive program and
stored in XML files.

ASL Trajectories of right hand | 6650 Extracting Y
of signers as different (x,y)  coordi-
words are signed. Dataset nates of the
consists of signs for 95 mass of right
different word classes with hand from
70 samples per word. files containing

complete sign
information.
Table 1

Overview of datasets used for experimental evaluation

class represents the trajectory that is closest to the class mean. Qualitatively,
similar motion trajectory patterns appear to have been grouped together quite
successfully. Trajectories that are filtered out as anomalous during learning
process are shown in Fig. 5. Each anomalous trajectory is represented by sep-
arate colour. It is clear from Fig. 5 that anomalous trajectories are dissimilar
from normal motion patterns as shown in Fig. 4.
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Fig. 5. Trajectories, identified as anomalous, during learning of patterns by applying
Tterative HSACT-LVQ algorithm on CAV-CORR dataset

6.3 Ezperiment 2: Comparison of Iterative HSACT-LVQ) with Competitive
Techniques

The purpose of this experiment is to compare the performance of proposed
Iterative HSACT-LVQ algorithm with the adaptation of spectral clustering
[32][22][33] and adaptive affinity propagation (Adaptive AP) [42]. The matlab
code for implementation of Adaptive AP is obtained from [43]. Comparative
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evaluation is provided in terms of detection of correct number of clusters, qual-
ity of clustering, robustness to the presence of different number of anomalous
samples in training data and response time.

HSACT-LVQ Spectral Adaptive AP
Datasets
# of CH Dunn| # of | CH Dunn| # of | CH Dunn
clusters clusters clusters
SIM;3 3 1667.3 | 3.17 | 2 1173.7| 2.98 | 2 1278.1 | 3.19
SIM5 5 1891.3 | 2.78 | 4/5 1463.4| 1.85 | 4 1254.6 | 2.74
Table 2
Comparison of Iterative HSACT-LVQ, Adaptive AP and spectral clustering based
on the number and quality of clusters using clean training data from simulated
datasets
HSACT-LVQ Spectral Adaptive AP
Datasets
# of CH Dunn| # of CH Dunn| # of CH Dunn
clusters clusters clusters
SIM3 3 1516.7 | 2.91 | 6/7 8239 | 1.16 | 3 1092.9 | 2.11
SIM; 5 1974.5| 297 | 7 1105.6 | 1.27 | 8 1165.7 | 1.89
Table 3

Comparison of Iterative HSACT-LVQ, Adaptive AP and spectral clustering based
on the number and quality of clusters using corrupted training data (with anomalies)
from simulated datasets

The experiment has been conducted on simulated SIM3 and SIMj5 datasets.
Learning of patterns is conducted separately using Iterative HSACT-LVQ),
Adaptive AP and spectral clustering, and two cluster validity indices are em-
ployed to evaluate the quality of clustering results. These include Dunn’s index
[35] and Calinski-Harabasz (CH) index [36].

The experiment is performed on clean (without anomalies) as well as corrupted
(with anomalies) training data to investigate the effect of presence of anomalies
on the performance of learning algorithms. The number of clusters identified
by different clustering algorithms along with the quality of clustering using
clean training data, as indicated by three different cluster validity indices,
are presented in Table 2. Similar results using corrupted training data are
presented in Table 3. Higher values for Dunn and CH index indicate better
clustering.

As evidenced from Table 2 and 3, Iterative HSACT-LV(Q algorithm performs
consistently better than Adaptive AP and spectral clustering for all the datasets
in the presence of clean and corrupted training data. Comparing results from
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Table 2 and 3 show good consistency in the performance of Iterative HSACT-
LVQ in the presence of clean and corrupted training data. However, the per-
formance of Adaptive AP and spectral clustering degrades significantly in the
presence of anomalies. Moreover, the number of clusters identified using our
proposed approach is consistent with the number of groupings hidden in the
dataset. On the other hand, Adaptive AP and spectral clustering is not able
to identify the correct number of clusters. This is verified by matching the

identified number of clusters with the actual number of groupings hidden in
classified SIM3 and SIM; datasets.

Effectiveness of Iterative HSACT-LVQ algorithm, as compared to competi-
tive clustering algorithms, is now demonstrated graphically for SIM5 dataset.
The training data from SIMj; dataset is shown in Fig. 6. Gaussian param-
eters used to generate each of the clusters in Fig. 6 is presented in Table
4. The training data is obtained by generating 70 samples from each of the
Gaussian distribution. The anomalies are induced in SIM5 dataset by gener-
ating different number of data points from a uniform distribution such that
(x,y) € (U(1,12),U(1,12)). The data points that lie within 3 standard de-
viations of normal clusters are then removed from the set of anomalous data
points. Results of learning patterns using Iterative HSACT-LVQ, Adaptive

.
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Fig. 6. SIM5 dataset sampled from five Gaussians

Cluster Colour Blue Green Red Magenta | Cyan
Mean (6,7) (11,7) (5,5) (8,10) (10,3)
. 0.2 0 0.2 0 0.3 0 0.7 0 0.6 0
Covariance
0 0.3 0 0.3 0 04 0 04 0 0.2
Table 4

Gaussian parameters used to generate 5 clusters

AP and spectral clustering is demonstrated graphically in Fig. 7. Fig. 7(a)
presents learning result for SIM5 dataset in the presence of 60 anomalies in
training data and Fig. 7(b) presents learning results in the presence of 120
anomalies. Data points belonging to same class are represented with similar
colour and marker to ease the visualisation of learned clusters. Comparing
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Fig. 7. Learning of patterns from SIM5 dataset using Iterative HSACT-LVQ, Adap-
tive AP and spectral clustering in the presence of different number of anomalies
(#anomalies) in training data (a) #anomalies = 60 (b) #anomalies = 90
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clustering results with the ground truth for SIMj; dataset shows that Itera-
tive HSACT-LVQ identifies the right number of clusters even in the presence
of significant number of anomalies. The overall distribution of normal clus-
ters learned using proposed algorithm, remains unaffected by the presence
of anomalies in training data. On the other hand, quality of Adaptive AP
and spectral clustering is significantly affected by the presence of anomalies.
The proposed technique is also robust to the presence of higher number of
anomalous samples in training data.

Comparison of different clustering algorithms is now provided by investigat-
ing the scalability of these algorithms to the number of options from which to
identify the correct number of clusters present in the dataset. We have imple-
mented these algorithms using MATLAB 7 and running times are noted on
an Intel Pentium IV 1.73 GHz machine with 504 MB of RAM. Experiment
has been conducted on SIMj dataset and the response time of clustering al-
gorithms, for different number of candidate clusters, are presented in Table 5.
It is evident from the results in Table 5 that our proposed approach is scal-
able to number of options from which to select the right number of patterns
hidden in the dataset. This is one of the important advantages of incorporat-
ing HSACT component with LVQ based learning that the proposed clustering
algorithm takes same amount of time for any number of cluster options. On
the other hand, spectral clustering requires repeating the complete clustering
algorithm for each potential number of clusters. As a result, spectral clus-
tering exhibits increasing time complexity with increasing number of cluster
options from which to identify the number of groupings hidden in training
dataset. Adaptive affinity propagation exhibits consistent time complexity for
different number of cluster options but its response time is significantly higher
as compared to Iterative HSACT-LVQ. In Table 6, comparison of different
clustering algorithm is now presented based on the response time for different
number of samples in training dataset. It is evident from the results in Table 6
that our proposed approach is scalable to the increasing number of samples in
training dataset. On the other hand, Adaptive AP and spectral clustering ex-
hibits increasing time complexity with increasing number of training samples.
Adaptive AP suffers from its quadratic complexity in function of the number
of training samples.

6.4 FEzxperiment 3: Fvaluation of Proposed Model-based Classification and
Anomaly Detection

The purpose of this experiment is to evaluate the performance of proposed
model-based approach for classification of unseen data samples to one of the
known patterns. The experiment demonstrates the ability of proposed classifi-
cation system to act as an anomaly detection system. The experiment has been
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Response Time (sec.)
# of cluster Iterative Spectral Adaptive AP
options HSACT-LVQ
2 11.74 6.91 273.45
4 11.62 11.93 273.45
6 11.61 15.70 275.12
8 11.32 21.31 275.50
10 11.31 28.85 271.37
12 11.46 36.51 273.72
14 11.10 45.98 274.27
16 11.57 52.43 269.97
18 11.27 59.64 274.91
20 11.67 74.36 275.15
Table 5

Comparison of clustering algorithms based on the response time for different number
of cluster options

Response Time (sec.)
# of training Iterative Spectral Adaptive AP
samples HSACT-LVQ
300 9.54 63.91 117.81
500 9.61 130.37 469.92
900 9.71 217.23 1706.12
Table 6

Comparison of different clustering algorithm based on the response time for different
number of samples in training dataset.

conducted on SIM5 and LAB datasets. For simulated SIM5 datasets, classified
training data is obtained by generating 50 samples from each class using the
distribution as specified in Table 4. Test data is obtained by generating 500
samples from a uniform distribution such that (z,y) € (U(1,12),U(1,12)).
On the other hand, LAB dataset is a classified motion dataset and contain
anomalous trajectories within the dataset itself. Classified training data for
this dataset is obtained by randomly selecting half of the trajectories from
each of the normal patterns in the dataset. The remaining half of the trajec-
tories from normal patterns along with anomalous trajectories are extracted
and used as a test data.

Feature vector representation of simulated SIM5 and trajectory-based LAB
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dataset is obtained as specified in previous experiments. Members of each
class from the training data are used to generate model of normality associated
to each normal pattern, using the algorithm as presented in Fig. 2. Classes
are modelled using 30 mediods per class. Once the m-Mediods (with m =
30) based model for all the classes have been learnt, classification of samples
from the test data is done using the classifier as proposed in section 5.2. We
have used different values of significance parameter 7 for SIM5 datasets. For
LAB dataset, classification and anomaly detection is carried out by setting
the value of 7 = 10. The classification and anomaly detection results for
SIM; dataset, using different values of significance parameter 7, are presented
in Fig. 8. Training data is represented using ‘+’ marker whereas classified
normal samples are represented by small circles. For ease of visualisation,
data points belonging to same class are represented with same colour. Samples
from test data that are identified as anomalous are represented using black ‘x’
marker. It is apparent from Fig. 8 that proposed classification system correctly
classifies test samples to known classes whilst identifying anomalies in the
test data. Another important observation from Fig. 8 is that setting higher
values of 7 results in acceptance of only those instances as normal that are
tightly bounded to normal classes. As 7 decreases, we are less likely to detect
anomalous patterns because it results in acceptance of more unusual data
instances as normal members of one of the known classes. Using different
significance levels therefore enables our proposed system to be adaptive to the
density of data within a class.

After demonstrating the efficacy of proposed classification and anomaly de-
tection approach on synthetic data, the experiment is then repeated on real
life LAB dataset. Classification obtained by applying the proposed approach
on LAB dataset is shown in Fig. 9. The matching of classification obtained for
each trajectory with its ground truth shows that no trajectory is misclassified.
Trajectories identified as anomalous using the value of 7 = 10 are shown in Fig.
10. It is clear from Fig. 10 that anomalous trajectories are significantly differ-
ent from the normal motion patterns as shown in Fig. 9. These experimental
results give evidence to the claim that the proposed model-based classification
and anomaly detection system is an effective and robust approach that works
well with real life motion datasets.

6.5 FExperiment 4: Quantitative Evaluation of Proposed Model-based Anomaly
Detection

The purpose of this experiment is to provide a quantitative evaluation of pro-
posed model-based approach for anomaly detection. The experiment has been
conducted on real life ASL dataset. We have selected signs from 6 different
words including ’alive’, ’all’, ’crazy’, 'drink’, 'god’ and ’go’. Classified training
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Fig. 8. Classification of test data, based on SIMj5 classes, using different values of
significance parameter 7

data for ASL dataset is obtained by randomly selecting half of the trajectories
belonging to each of the 6 selected words. The remaining half of the trajec-
tories are then selected and used as test data. Feature vector representation
of ASL dataset is obtained as specified in earlier experiments. Patterns are
modelled using 20 mediods per pattern. We have used the value of signifi-
cance parameter 7 = 8 for anomaly detection. Test dataset is then passed
through the anomaly detection system. We would expect that few instances
drawn from class X would be recorded as anomalous when tested against the
same class, whereas nearly all instances would be detected as anomalous when
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1

Fig. 10. Trajectories identified as anomalous from LAB dataset using proposed
anomaly detection mechanism with 7 = 10

tested against a different class Y.

The percentages of instance vectors from ASL dataset, detected as anoma-
lous, are shown in Table 7. Test class (X)) is represented by top row whereas
modelled class (Y') is represented by left column in Table 7. If the classes were
completely separable, the diagonal table entries would be zero and the off-
diagonal entries would be 100. The accuracies of proposed anomaly detection
system on different ASL signs show that almost all signs from a particular
class appears to be anomalous when its membership is tested against the
m-Mediods model of class representing another sign. Very few samples are
identified as anomalous when they are tested again the model of the same
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Modelled /Test alive all crazy drink go god
Class
alive 0 100 100 100 100 100
all 100 7.4 100 100 100 100
crazy 100 100 3.7 96.3 100 100
drink 100 100 100 0 100 100
go 100 100 100 96.3 0 100
god 96.3 100 100 100 100 7.4
Table 7

Percentage of instance vectors detected as anomalous for ASL dataset

class as evident from Table 7.

6.6 Experiment 5: Comparison of Proposed Classifier with Competitive Tech-
niques

The purpose of this experiment is to compare the performance of proposed m-
Mediods model-based approach for classification with competitive techniques.
To establish a base case, we have implemented two different systems for com-
parison including GMM and Mahalanobis classifier. The experiment has been
conducted on real life ASL dataset. Signs from different number of word classes
are selected. m-Mediods based models from the classified training data for
ASL dataset is obtained as specified in Experiment 4. Modelling of patterns
for Mahalanobis classifier is done by estimating a single multivariate Gaus-
sian PDF for each class. Modelling of patterns and classification of unseen
samples using GMM is based on the approach as described in [37]. Once the
models for all the classes have been learnt, the test data is passed to different
classifiers and the class labels obtained are compared with the ground truth.
The experiment is repeated with different numbers and combinations of word
classes. Each classification experiment is averaged over 50 runs to reduce any
bias resulting from favourable word selection.

The classification accuracies obtained for different classifiers using various
numbers of word classes from ASL dataset are shown in Table 8. Based on these
results, we see that the proposed m-Mediods model-based classification yields
superior classification accuracies. GMM produces good performance for lower
number of classes. Increasing the number of classes results in degrading the
performance of GMM-based classifier. The proposed classification approach
gives better classification accuracies than Mahalanobis classifier as well. From
Table 8, it can also be noted that the relative accuracy of the proposed classi-
fier compared with GMM and Mahalanobis classifier increases with an increase
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ASL (#classes: #samples)
2:70 4:140 8:280 16 : 560 24:840
m-Mediods 0.98 0.92 0.88 0.83 0.78
Mahalanobis 0.95 0.88 0.82 0.75 0.71
GMM 0.97 0.92 0.83 0.74 0.69
Table 8

Percentage classification accuracies for different number of classes from ASL dataset

in the number of classes; thus making it more scalable for larger number of
classes.

Similar experiment with ASL dataset has been conducted by Bashir et al.
[22] using their proposed GMM and HMM-based classification system. They
reported classification accuracies of 0.96, 0.92, 0.86 and 0.78 for 2, 4, 8 and
16 word classes respectively. Comparing these classification accuracies with
the results obtained using our approach, we see that m-Mediods model-based
classifier performs better than GMM and HMM-based recognition system [22]
even though our proposed classification approach is conceptually simpler and
computationally less expensive.

7 Discussion and conclusions

In this paper, we have presented a detailed discussion on unsupervised learn-
ing of patterns in the presence of anomalies in training data. A novel Iterative
HSACT-LVQ algorithm has been proposed for learning of motion patterns
whilst filtering anomalous samples. The paper also addresses the problem
of modelling normal motion patterns. A novel approach, referred to as m-
Mediods modelling, is proposed that models the class containing n members
with m-Mediods known a-priori. Once the m-Mediods model for all the classes
have been learnt, the classification of new trajectories and anomaly detection
can be performed by checking the closeness of said trajectory to the models
of different classes using hierarchical classifier.

Experimental results are presented to show that Iterative HSACT-LV(Q based
learning mechanism gives better clustering results than competitive techniques
such as adaptive affinity propagation and spectral clustering. Learning of pat-
terns, using proposed approach, is unaffected by anomalies in training data
until the presence of very high number of anomalies results in development
of groupings within anomalous data, thus resulting in identification of ghost
clusters. The approach is also scalable to number of options from which to
select the right number of hidden patterns and the size of training dataset.
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Experiments are also conducted to show the effectiveness of proposed m-
Mediods based classification and anomaly detection system. Matching the clas-
sification results with labelled training data shows that the test instances are
classified correctly and filtered instances (anomalies) are sufficiently distant
from all the known classes. Comparison of proposed classifier with competi-
tive techniques demonstrates the superiority of our proposed approach as it
performs consistently better than commonly used Mahalanobis, GMM and
HMDM-based classifiers.
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